
Jol Concepts and Facilities Manual - Preface

Concepts and Facilities

Jol

Universal Command Language

Version 5.1

CONCEPTS AND FACILITIES MANUAL

Open System Command and Retrieval (OSCAR) Pty. Ltd.

Jol Concepts and Facilities Manual - Preface

Jol Command Language "Concepts and Facilities Manual".

Sixth Edition (November, 1999)

This is a major revision of, and obseletes, the
Fifth Edition of the Jol Command Language
"Concepts and Facilities" September 1987

Copyright © Clement Clarke, 1973-2007.

All Rights Reserved. The contents of this publication may not be reproduced in any form in any means in
part or in whole without the prior written consent of the author.

Open System Command and Retrieval (OSCAR),
16/38 Kings Park Road,

West Perth
Australia 6005.

Telephone (61)-8-9324-1119
Email oscarptyltd@ozemail.com.au

Jol Concepts and Facilities Manual - Preface

PREFACE

This Concepts and Facilities Manual presents a general overview of Jol - The
Universal Command Language. It details Jol's operation and functions, and some
of its more outstanding features. Jol is fully documented in the Jol Reference

Manuals and User Guides.

This manual is aimed more for Programming Management than for Technical
Programming staff. Due to the very nature of Jol, there will be a number of
sections in this manual that become very technical, especially the sample Jol
jobs. The overall readability of this manual will not be affected by these
sections. However, they are necessary in providing a more complete picture of
the Command Language, and providing for the more technically oriented a
needed balance of technical information.

The major aims of this Concepts and Facilities Manual are:-

(1) To provide you with a broad understanding of Jol. It will provide you

with sufficent information to understand Jol's uses, Jol's capabilities, and
Jol's benefits.

(2) To clearly demonstrate that the benefits of the powerful Jol Command

Language meet the needs of today's market place.

(3) To outline all the new developments and changes that have been made to

Jol.

Over the last few years, Jol has experienced enormous developments and changes
that have been geared to increasing its power, flexibility, proficiency and ease of
use. For example, Jol is now twice as powerful as when it was initially released,
as measured by its proficiency in operations. Jol can now use IBM's Dynamic
Allocation so that jobs can run under TSO or in Background, with or without the
use of JCL.

In addition, Scheduling and Networking Facilities have been added that allow
you to specify which jobs are to run on which days, and which jobs are to run
concurrently. This facility works equally well with Jol jobs or JCL.

The recent addition of a Data Base of Data Sets attributes reduces the code
required to write JCL to approximately one-quarter that required for JCL, and
provides compatability with UNIX. Jol automatically merges information from
the data base, and creates all data sets (including VSAM data sets) when
necessary.

We have also developed a Personal Computer version of Jol that can generate
JCL for MVS and soon DOS/VSE and UNIX.

The total Jol package is now accompanied by an interactive "Teach Yourself Jol"
kit, that can be run on any IBM Personal Computer.

For a different view on the new and more powerful Jol Universal Command
Language, review the "Answers to Questions" booklet; and for a Financial

Jol Concepts and Facilities Manual - Preface

Appraisal, work through the "Evaluation Plan and Financial Work Sheets".

Summary of

Amendments

SUMMARY OF RECENT IMPORTANT DEVELOPMENTS TO Jol

Data Base of Data Sets

• Data Set attributes can be stored in a Data Base. Jol automatically
merges information from the data base, and creates all data sets
(including VSAM data sets) when necessary.

This reduces the code required to write JCL to approximately one-
tenth that required for JCL, and provides compatability with UNIX.

TSO Support.

• Options to allow the job to execute under TSO or Background, using
the same Command Language.

Scheduling and Networking Facilities.

• Facilities to specify which jobs are to run on which days, and which
jobs are to run concurrently. Works equally well with Jol jobs or JCL.

ALLOCATE Command.

• ALLOCATE a data set in the Preprocessor or Macro Phase for Input
or Output.

Addition of OPEN, READ and WRITE Instructions.

• OPEN a file for input or output.
• READ a record into a variable.
• WRITE a record from a variable.

In addition, a CALL instruction will execute any problem program at
Compile Time.

Automatic Reset of Relative Generation Numbers

• Relative Generation Numbers are automatically reset for Reruns or
Restarts.

Testing if a data set exists.

• TEXIST Command allows the testing of the existence of a data set at
execution time.

ASSOCIATED DOCUMENTATION INCLUDES:

• Jol Reference Manual
• Jol Reference Guide
• Jol Answers to Questions
• Jol Evaluation Plan and Financial Work Sheets
• Jol Conversion Utilities
• Jol Planning and Installation Guide
• Jol System Programmer Guide
• Jol Program Logic Manual

Jol Concepts and Facilities Manual - Preface

PREFACE 3
Summary of Amendments 4

INTRODUCTION 7
Command Languages 7
Functions 8
Structure of this Concepts and Facilities Manual 11

BENEFITS OF Jol 13
The Command Language to Complement Powerful Computers and Software 13
Jol's Benefits are Real 13
Evaluating Jol 13
Easy to Use 14
Easy to Learn 15
Immediate Cost Savings 15
More Cost Savings - Re-Runs Run Out 15
Scheduling and Networking 16
Planning Ahead 16
Other Useful Facilities for Use in Scheduling 18
Networking of Jobs 18
Submitting Dependent Jobs 21
Increased Efficiency and Better Computer Utilization 21
Increased Management Control 22
Increased Error Detection 22
Easy Modification of Programs 22
Jol Enhances TSO 22
Allocating, Reading and Writing Data Sets 23
Other Jol Features to Further Increase Programmer Productivity 23
Relational Capability 23
Change Facility 23
Registration Capability 23
Library Facility 24
Dependent Job Submission Facility 24
Logic Capability 24
Enhanced Data Center Operations 24
On-Line Data Entry for Job Submission 24
Calendar Facility 24
Rerun/Restart Facility 24
Standards Enforcement 24
Communication Ability 25
Easy Overriding 25
Efficient Computer Usage 25
Catalog Management 25
Tape Access Management 25
Reduction in Job Steps 25
Reduced Overheads in Symbolic Translation 25
No Hooks to the Operating System 25

USING Jol 27
Overview in Using Jol 27
Computer Aided Instruction in Learning Jol 28
Preparation of Jol Input 29
Methods of Using Jol 29
General Format of a Jol Program 30
Automatic Scheduling 32

Jol Concepts and Facilities Manual - Preface

Networking 32
Submitting Other Jobs 32
Passing Symbolic Variables to Other Jobs 32
Scheduling According to Date 33
Using Jol with JCL 33

GENERAL CHARACTERISTICS OF Jol 35
Written Languages 35
Language Syntax and Structure 35
Language Clarity and Semantics 36
Definitions 36
Program Definition 37
Printer Output Definition 37
Card Image Input Definition 37
Data Set Definitions 37
Old Data Sets 37
New Data Sets 38
Temporary Data Sets 38
Free Format and Optional Keywords 38

ADDITIONAL FACILITIES 39
Data Base of Data Set Attributes 39
Language Extension - Jol Macros or Commands 40
Macros 40
Source Text Library 40
Compile Time Facilities 41
Symbolic Variables 41
Restarts 44
Simple Reruns 44
Advanced Methods 44
Generation Data Groups 45

SUMMARY OF Jol's INSTRUCTIONS 49
RUN 55
SUBMIT 56

USER EXITS 57

Jol Concepts and Facilities Manual - Preface

INTRODUCTION

Command

Languages

Jol is a high-level, English-like and Universal COMMAND LANGUAGE. A
Command Language is the highest level of communication between the User and
the computer. Command languages tell the computer what to do, when to do it,
and what to do with the result. Programming Languages, such as PL/I and
COBOL, give the computer detailed instructions on how to do it.

Use of Command Languages spreads across all areas of Data Processing.
Without them, we have no means of communicating with the Operating System.
Inefficient use of a Command Language can have disastrous effects on
corporations' computing resources.

Today, not all computer Users are Computer Technicians. Therefore, it is
extremely important that the Command Language used is simple and easy to use.
Additionally, with the increasing expansion of computer resources and the
growing number of software packages being acquired by each installation, the
Computer Users are increasingly needing more power and flexibility in their
Command languages. Jol is unique in meeting these new standards for
Command Languages.

Jol uses a simple, flexible, concise and English-like command structure to
communicate with your operating system and to effectively control data,
programs, and events. It is easy to learn, easy to use, and easy to change. With
these features, Jol allows Users to better utilize their skills, experience, and
creative abilities enabling them to be more proficient than was ever previously
possible.

Jol is written in a procedural format that is already familiar to Programmers using
programming languages such as COBOL, PASCAL or PL/I. The procedural
format provides you with the flexibility to solve the most complex type of
requirements in a logical straightforward manner. By combining the flexibilities
of these modern procedural languages with many new features, Jol provides a
simple, powerful, and flexible INTERFACE to the operating system.

In addition, Jol coexists with JCL, and interfaces with contemporary
development techniques, such as top down design, step level refinement,
structured coding, and prototyping. Jol's many features focus on the End User,
programming maintenance and development, production (e.g., operations and
scheduling), management control, machine utilization, job scheduling and job
networking.

 Jol has some 40 commands. These commands can be combined with themselves
and with any other program to form new commands tailored specifically to your
installation. With Jol you can also execute commands from within commands,
adding greatly to the flexibility and simplicity of procedures. This open-
endedness is one of the highlights of Jol.

Jol has many other highlights. Management can use Jol to monitor jobs and trap
inefficiencies before jobs begin to execute. Systems Programmers can alter the
inefficient code and make it more efficient through Exits. Data set protection
facilities are also offered.

The data set attribute data base allows the data manager great flexibility - data set
attributes can be changed without altering any of the Jol command language
scripts.

Jol Concepts and Facilities Manual - Preface

Currently Jol complements the powerful IBM MVS systems (TSO and ISPF) by
providing, for example, simplified instructions and access to Calendar facilities
at the Command Language level.

The Personal Computer version of Jol produces either JCL or a special pseudo-

code, so that jobs can be initialized on the Personal Computer and then submitted
to the mainframe for execution.

Language translators are available to convert MVS, DOS and X8 JCL to Jol.

Functions The power, simplicity and flexibility of Jol are highlighted by the list below of
some of Jol's instructions, and in turn by the "PRINT" example.

With Jol you can:

• Schedule and Network Jobs. You specify which jobs are to run on which

days, and which jobs are to run concurrently. This facility works equally well
with Jol jobs or JCL.š

• RUN programs.
• PRINT data sets.
• COPY data sets or volumes containing data.
• CATALOG or DELETE data sets.
• Test Return Codes, Error conditions and Symbolic Variables.
• SUBMIT other jobs to the system.
• ALLOCATE, READ and WRITE data sets.
• List Catalogs.
• Write your new Jol Instructions.
• and more.

For example, to PRINT a data set you could say:

PRINT JOL.INCLUDE(PAYROLL);

which will print on the printer member PAYROLL of the JOL.INCLUDE data

set.

To SORT a card image data set, and CATALOG and PRINT it may be coded
as:

Jol Concepts and Facilities Manual - Preface

DCL CARDS *;
cards
EOF;

SORTSTEP:
 SORT CARDS /* Sort cards as specified */
 TO SORTED.CARDS /* to Output Data Set */
 FIELDS=(10,10,CH,A); /* over fields */

 IF SORTSTEP=0 /* If sorted successfully */
 THEN DO;
 CATLG OUTPUT; /* then catalog data set */
 PRINT OUTPUT; /* and Print it. */
 END;

Figure 1-1. A small Jol Job Example

Note particularly that the output data (SORTED.CARDS) has no attributes
specified. Jol finds the attributes, space and volume from the data set data base.
This provides compatibility with UNIX and other operating systems.

DCL CARDS *;
cards
EOF;
DCL OUTPUT DATA SET /* Define output data set */
 SORTED.CARDS /* Define name */
 FB 80,800 /* Define record format */
 100 RECORDS /* Define space */
 SYSDA; /* Define unit */

SORTSTEP:
 SORT CARDS /* Sort cards as specified */
 TO OUTPUT /* to output */
 FIELDS=(10,10,CH,A); /* over fields */

 IF SORTSTEP=0 /* If sorted successfully */
 THEN DO;
 CATLG OUTPUT; /* then catalog data set */
 PRINT OUTPUT; /* and Print it. */
 END;

 Figure 1-2. A small Jol Job Example

This second example shows how you can specify data set attributes within your
Jol program instead of using the data set data base to retrieve the data set
attributes.

Additionally, the Jol Macro facility allows an installation to tailor the Command
Language to its own requirements. Often, Users suggest additions that can be
used by other organizations. These are then passed on to all installations in the
form of Newsletters, and sometimes incorporated into later releases of The
Universal Command Language.

Jol Concepts and Facilities Manual - Preface

Jol Concepts and Facilities Manual - Preface

Structure of this Concepts and Facilities Manual

 This Concepts and Facilities Manual has been divided into the following

sections:

Section One: Introduction.

Section Two: Benefits of Jol.

Outlines the benefits of Jol to your overall organization, with an emphasis
towards those benefits that reduce costs and increase your productivity.

Section Three: Using Jol.

A general overview on how to operate Jol. Different methods of using Jol and
the general format of Jol jobs are outlined. The Computer Aided Instruction
facility in learning Jol is also outlined. Throughout this section the power, the
extensive features and the simplicity of Jol are highlighted.

Section Four: General Characteristics of Jol.

This section outlines the general characteristics in operating Jol. It outlines some
further features that affect the general operations of Jol. It basically extends the
logic of Section Three, but in greater detail.

Section Five: Additional Facilities

This section outlines additional facilities of Jol. Again with an emphasis towards
User Benefits and advantages of Jol over alternative Command Languages.

Section Six: User Exits

This section outlines one of the most important additional facilities of Jol - User
Exits.

Section Seven: Summary of Jol's Instructions

This section presents a list of instructions available in Jol. This section also
presents a sample list of Macro Command Instructions that are available with Jol.

Jol Concepts and Facilities Manual - Preface

Jol Concepts and Facilities Manual - Preface

 BENEFITS OF Jol

The Command

Language to

Complement

Powerful

Computers and

Software

The benefits of Jol are numerous, outstanding and unequalled by any existing
Command Language or OS Interface.

After reviewing other Command Languages and developing Jol to its current
standard, we can confidently claim: "After more than two decades, Jol has found
and brought the basic benefits of Computers back to your business - the place
they should have never left."

Dramatic improvements have been made to IBM computer hardware, operating
design and performance. Computers have gone from 1 million instructions per
second to more than 27 million instructions per second. Operating systems have
gone from performing one task to performing multiple tasks.

During this very same time, the Command Language has been neglected. Little
has been done to enhance its development and in turn the productivity of the
Programmer. To further exacerbate the predicament, the Applications
Programmer must now know in the order of a dozen different languages in order
to create an application - and this number is increasing. These languages are
artificial, non-English like, and all different.

This neglect of the Command Language, has resulted in many non-productive
hours of learning programs and the disproportional growth of I.T. departments
with the hiring of many extra staff. All this has resulted in a reported annual cost
of billions of dollars to corporations.

Jol the Universal Command Language goes a long way to solve many of these
problems relating to the interface with your computer. Jol even goes as far as
converting many of these problems to big advantages for the User and your
organization. The range and scope of the benefits that Jol brings to the Users of
IBM and compatible computers are so great that we have yet to find an
installation where the benefits of Jol have not greatly outweighed its cost.

Jol's Benefits are

Real

No organization uses computing facilities unless those facilities are going to
prove beneficial.

Benefits happen due to a saving of time, space, or money. A major criterion that
must be met by any product, is the benefits must outweigh whatever problems
may appear. With some computers and software the question of real benefits is a
marginal one.

This does not apply to Jol.

Evaluating Jol

When an evaluation of a new software product is commissioned, the following
criteria is generally the basis of the evaluation:

1. Does the product suit the installation?

2. Does it fulfill a current need?

3. Does it eliminate a known problem area?

4. Does it provide new benefits in the saving of time: machine time, people

Jol Concepts and Facilities Manual - Preface

time and learning time?

5. Does it save money?

This "Benefits of Jol" section demonstrates how Jol fulfills all these
requirements. As every current User of Jol has reported, the savings are
generally in hundreds of thousands of dollars per annum (sometimes reaching
millions), and these savings can be realized soon after Jol is installed.

Below are listed some of the important areas where Jol provides real benefits.
Obviously the importance and relevance of each area will differ according to the
requirements of each installation. What is certain, is that Jol will save you
resources - computer time, people time, and money.

Easy to Use

Jol is an English-like Command Language. Jol's similarity to other high level
languages means that Users rapidly become proficient in its use, consequently
allowing all its benefits to be reaped quickly.

Jol is easy to use.

Jol's English-like free form and procedural format make it easy to use, even for
non-D.P. personnel.

Jol does not require the same painstaking attention to coding detail that JCL
requires. This means that procedures can be coded with greater speed, while still
achieving a much reduced incidence of Programmer error.

One of the most important design features of Jol is the need for extraneous words
and details has been eliminated, allowing free form coding wherever possible.
JCL is syntax restrictive and relies heavily on Keywords, Sequencing and
Positional Parameters to obtain the information it requires to successfully execute
a job. On the other hand, Jol has made most Keywords redundant and utilizes
contextual recognition wherever possible. This is illustrated in the example
below where four statements are written in Jol and JCL:

 Jol

 5 TRKS

 2,1 MINS

 VB 100,7294

 IF A=10 | B=2

 JCL

 SPACE=(TRK,(5))

 TIME=1 with elapsed time of 2

 DCB=(RECFM=VB,LRECL=100,

BLKSZE=7294)

 COND=((10,NE,A),(2,NE,B))

Jol Concepts and Facilities Manual - Preface

Even considering the above example and all the other comparisons to be made
between Jol and JCL throughout this General Information Manual, it must be
accepted that JCL is a powerful and efficient tool on IBM and Facom machines.
However, one of the primary intentions of Jol is to provide the User with easier
access to this tool.

Easy to Learn

Since Jol presents the Programmer with a distinctly simplified and logically
structured view of the operating system, Jol can be learnt in a relatively short
time.

Experience has shown that most Programmers can learn Jol from a three day
course. New Jol Programmers are often writing complex control procedures
within a week or two of their Jol course. Consequently, the Users' stresses
associated with Learning a new language are reduced to a minimum, and cost
savings begin accruing immediately.

Immediate Cost

Savings

Jol's free format language syntax evokes sighs of relief as Applications
Programmers begin to write their job control statements as easily as they write
their normal job stream. As a result, the computer installation gains
immeasurably through greater Programmer confidence and efficiency, as these
Programmers need no longer rely on Systems Programmers to get their jobs
running.

And Systems Programmers enjoy the extra hour or two a day they obtain from
not having to correct myriads of errors in more junior Programmers' work. Jol
allows Systems Programmers to actually get on with their own real work more
effectively than ever before.

Computer industry surveys have shown that up to 20% of a Programmer's time is
eaten up by maintaining existing JCL and writing new JCL. Taking the current
average cost of employing a Programmer at $50,000 per year (this includes
salary, insurance, payroll taxes, terminal, facilities etc.), $10,000 of this goes to
maintaining and writing JCL. Using Jol, this $10,000 will be reduced to $3,000 -
a saving of $7,000 per Programmer. If you have 25 Programmers in your
installation, this could amount to $175,000 per year either saved or put to better
use.

More Cost Savings

- Re-Runs Run Out

JCL has inherent coding difficulties, like the need for exact brackets, commas
and asterisks in a very demanding order. JCL's coding difficulties have caused
re-runs of programs to become an occupational hazard at all IBM installations.
Everyone knows they exist, but no-one likes to admit they exist. It's not the I.T.
Managers' fault, but it's very difficult to explain to company Directors that re-
runs are an IBM fact of life. We could almost guarantee that your installation is
having 8-10 hours of re-runs a week.

According to surveys around 10 hours of re-runs occur each week due to JCL
errors. If it costs around $300 per hour to run a computer, it is easy to see that
many installations could lose up to $3,000 a week in this one area alone. As Jol
will save approximately 80% of these re-runs, around $120,000 can be saved
each year - not to mention Operator savings, and the prestige of being able to get

Jol Concepts and Facilities Manual - Preface

the work out on time, every time.

Jol has extensive pre-compile error checking facilities. These facilities can
virtually eliminate re-runs caused by JCL errors. The saying at our User sites is:
"If it's on the queue, it'll run!"

Scheduling and

Networking

Jol contains a Scheduling and Networking System that is extremely simple to use
and written entirely in high level Jol Code. This powerful facility allows you to
easily make changes to the system to suit your installation. Using the facility, it
is possible to program job schedules for days, months, or even years in advance.
All your existing jobs can be started without changes. Furthermore, Jol can be
used to schedule your de-bugged and already tested jobs written in JCL. Full Jol
symbolic variable processing is allowed, even with JCL jobs.

The Jol Schedule Data Set contains various members that can be used to specify
which jobs are to run on WORKDAYS, HOLIDAYS, MONDAYS,

TUESDAYS, etc., and jobs for particular dates such as JUL12. At a time
suitable to you, Jol examines this data set and prepares all the appropriate jobs
for execution.

To specify which jobs are to be started, simply code the name of the member
containing the job in the JOL.SCHEDULE data set. For example, to indicate
which jobs are to be executed daily may be done by coding the names of the jobs
in member WORKDAY, as shown below.

PREPARE BACKUPS;
PREPARE ACCOUNTS;
PREPARE PAYROLL;

Figure 2-1: Indicating Which Jobs are to Run.

The jobs named are submitted for execution on the appropriate days. Jobs may
contain any Jol instruction, and include networking instructions. For example,
even daily jobs can examine the Jol calendar or accept information from the
terminal and dynamically alter themselves before submission.

Planning Ahead

Jobs in member WORKDAY are submitted on a daily basis. In addition, other
members of the library are examined based on dates. The following members of
the schedule data set are executed on the appropriate days:

WORKDAY

HOLIDAY

WEEKEND

SUN

MON

TUE

WED

THU

FRI

SAT

Executed only on normal working days.
Executed only on non-working days.
Executed only on Weekends.
Executed on SUNDAYs.
Executed on MONDAYs.
Executed on TUESDAYs.
Executed on WEDNESDAYs.
Executed on THURSDAYs.
Executed on FRIDAYs.
Executed on SATURDAYs.

Figure 2-2: Members to be Examined on Weekdays.

Jol Concepts and Facilities Manual - Preface

 In addition, the following members of the schedule data set are executed (if

present) on the specified days:

 JAN01 Executed on January 1st.
 JAN02 Executed on January 2nd.
 ...
 FEB01 Executed on February 1st.
 MAR01 Executed on March 1st.
 APR01 Executed on April 1st.
 MAY01 Executed on May 1st.
 JUN01 Executed on June 1st.
 JUL01 Executed on July 1st.
 AUG01 Executed on August 1st.
 SEP01 Executed on September 1st.
 OCT01 Executed on October 1st.
 NOV01 Executed on November 1st.
 DEC01 Executed on December 1st.

Other jobs can be submitted on the last working day,
the last day, the last working day -1 and so on.

It is also an easy matter to have jobs submitted every second week, should
you so desire. A member called SPECIAL has prototype code for these
types of jobs.

Figure 2-3: Month and Day Members Containing Scheduling Information.

Once a day, Jol examines the Schedule data set. If it is not a holiday, it examines
the WORKDAY member; if it is Saturday or Sunday, the data in these members
is used instead, otherwise member HOLIDAY is used. Additionally, any other
member such as JUL14 is also examined, if appropriate. The jobs found are then
submitted.

Jol Concepts and Facilities Manual - Preface

Other Useful

Facilities for Use in

Scheduling

Additionally, Jol allows:

• Read and Write access to existing or new data sets at compile time.

These data sets may contain other scheduling information or further details of
work to be run on particular days, or under particular circumstances, or both.
Jol can create tailored job streams. These are created on finding the
appropriate data in the schedule.

• Access to the system calendar.

Jol allows the date (year, month, day) and time to be accessed. Using this
data, Jol can create tailored job streams.

• Testing for the existence of data sets.

Jol can test if a data set exists. If a data set does exist, it is possible to submit
other jobs to run, or take a different path through the current job.

• Symbolic Parameters or Variables can be passed from Job to Job.

Networking of Jobs

Often it is desirable to process two or more jobs in parallel, and after those jobs
have reached completion, start one or more jobs.

To prepare a Jol network is a simple task. You can use your previous Jol or JCL
jobs without alteration. Prepare your network commands and place them in your
Jol program. These commands typically submit Jol and/or JCL jobs.

A typical network job might be that jobs JOB1 and JOB2 are to run, and after
both jobs have completed JOB3 is to commence.

This can be represented as shown below:

JOB1 JOB2

 JOB3

Figure 2-4: A Small Job Network

This may be coded in Jol in the following manner:

Jol Concepts and Facilities Manual - Preface

NETWORK ONE;
SUBMIT JOB1;
SUBMIT JOB2;
SUBMIT JOB3 AFTER JOB1 & JOB2 ENDED;

ENDNET;

Notice the Jol instructions NETWORK and ENDNET. The NETWORK
instruction is followed by the name of a network. This defines a unique network
so that you can submit the same jobs in different networks, and still allow Jol to
network the correct jobs. The ENDNET informs Jol that any instructions
following are not part of the network.

You can also use other Jol instructions such as PANEL in a network. Any
instruction will be executed as normal, except for SUBMIT, which is copied to a
work file for possible re-execution at the end of each job.

For example, the jobs above may require the Operator to provide Symbolic
Variables for the jobs.

 For example:

PANEL ('ENTER TODAY''S DOLLAR RATE',DOLLVAL,7);

NETWORK ONE;

SUBMIT JOB1 SYMS('DOLLVAL=%DOLLVAL);
SUBMIT JOB2;
SUBMIT JOB3 SYMS('DAY=%DAY')

AFTER JOB1 & JOB2 ENDED ;
ENDNET;

Figure 2-5: A Small Network with PANEL and Symbolic Variables.

A more complex example of Networking is represented below:

Jol Concepts and Facilities Manual - Preface

 JOB1 JOB2

 JOB3 JOB4

 JOB5

 JOB6

 JOB7 ← Only on Fridays

Figure 2-6: An Advanced Network.

In this example, JOB1 and JOB2 may proceed in parallel. The other jobs must
execute in the following sequence:

• JOB3 can commence processing after either JOB1 or JOB2 have ended.

• JOB4 cannot commence until both JOB1 and JOB2 have finished.

• JOB5 must wait for JOB2 to end before it can start.

• JOB6 must wait for JOB3, JOB4 and JOB5 before it can start.

• JOB7 must wait for JOB6 to end, and it is to be executed only on Fridays.

 One possible method of coding the example above is presented:

NETWORK TWO;

SUBMIT JOB1;
SUBMIT JOB2;
SUBMIT JOB3 AFTER JOB1 OR JOB2 ENDED;
SUBMIT JOB4 AFTER JOB1 AND JOB2 ENDED;
SUBMIT JOB5 AFTER JOB2 ENDED;
SUBMIT JOB6

AFTER JOB3 & JOB4 & JOB5 ENDED;
IF %DAY='FRIDAY' THEN

SUBMIT JOB7 AFTER JOB6 ENDED;
ENDNET;

Figure 2-7: Coding the Advanced Network.

Jol Concepts and Facilities Manual - Preface

Submitting

Dependent Jobs

In addition to the Jol NETWORK instructions, the Jol SUBMIT Command
ensures the correct order of processing interdependent jobs is observed. Other
jobs may be SUBMITted at any time - even before the end of the current job.

Usually, the source text for SUBMITted jobs can be found in a library.

Please note that ASP and JES3 have facilities allowing the creation of a "Job
Net". Jobnets are supported by Jol.

Increased

Efficiency and

Better Computer

Utilization

Through the basic design features of Jol, a far greater degree of efficient
utilization of computer resources is possible. For example:

• Catalog searching is performed at compile time, thus minimizing
elapsed time, and providing better error checking.

• Data sets are declared only once in a Jol job, hence the catalog needs to
be searched only once, irrespective of the number of times the data set is
used.

For the Dynamic Allocation option:

• When Jol is using Dynamic Allocation instead of generating JCL, it
monitors the progress of the job at the end of each program execution,
and frees resources as soon as possible.

• Jobs can run immediately under TSO, thus providing immediate results.

• Dynamic Allocation can be faster than JCL.

For the JCL Generate option:

• Jol generates optimized JCL.

• The total number of OS steps is reduced, because the Jol processor has a
transient scheduler/initiator incorporated in it. All catalog and scratch
statements can be performed in a single OS step.

Jol Users have reported a 3% - 10% reduction in computer time as a result of the
extra efficiency Jol provides over JCL, CLISTS and ISPF. Jol Users have also
reported that, in some instances, this reduction can be even greater.

In addition to these savings, the job validation checks applied by Jol,
substantially reduce the incidence of jobs failing due to Control Language coding
errors. In general, it is not unreasonable to expect a 75% reduction in the
occurrence of these failures.

Jol Concepts and Facilities Manual - Preface

Increased

Management

Control

Jol provides management with an opportunity to monitor all jobs entering a
system and hence, to exercise a degree of control that has never been previously
available.

By incorporating User supplied routines into the Jol processor, Jol makes the
following management control facilities available:

• Control of authorized use of the machine.

• Control of access to data sets. Sensitive information can be
protected by ensuring that only authorized personnel (or
departments) read or write data sets using authorized programs.

• Strict enforcement of standards and conventions for data set names,
program names, etc.

• Determination of which programs are using which resources.

• Application of efficient default values for missing information and
the detection and correction of inefficient specifications.

• Provision of an easy means of transferring jobs to other computers in
case of hardware failure.

• Printing of System Status Information (SSI) for each program. This
is a program audit facility that shows precisely which program has
been executed.

Increased Error

Detection

As previously outlined, Jol substantially reduces the number of job failures
caused by incorrect job control information. However, some errors will still
occur. Jol's comprehensive set of validation checks ensures that all errors will be
isolated at the commencement of the job. The errors will be clearly defined for
the User by over 400 informative error messages. The messages clearly define
the error and its location so that the User knows exactly where and which error
has occurred.

In addition to the normal syntax checks that are applied to each Jol statement, the
internal consistency of the total job procedure is examined. If any
inconsistencies are detected, Jol either corrects the procedure or does not submit
the job for execution.

Jol also has an error detection facility that allows Operators to simply find errors.
Execution messages are placed at the beginning of the job, so that pages of JCL
do not have to be scanned to find messages or errors.

Easy Modification

of Programs

The attributes that make Jol easy to learn and easy to use, also make it easy to
modify. In many cases, a change in a cataloged text can be made simply by the
use of an INCLUDE instruction or by changing a macro in the Jol MACRO
library.

Jol Enhances TSO

Jol's PANEL instruction provides further time and cost savings, particularly to
the MVS User who depends on CLISTS.

The PANEL instruction provides a powerful method for inputting data to Jol
under an interactive system such as TSO, TSO/ISPF or a Personal Computer.
The text is displayed on the screen including all entries and defaults. The User

Jol Concepts and Facilities Manual - Preface

can modify the default entries supplied by Jol and then enter all the data to Jol.
The Jol code can then be modified using the data from the screen.

Allocating, Reading

and Writing Data

Sets

Like TSO, Jol has instructions to Allocate, Open, Read and Write data sets. Data
Sets can be copied or created.

Typical uses of these instructions include:

• Data Entry, using the Jol PANEL instruction to input data that may then
be used by an update program.

• Reading a machine readable schedule, then submitting jobs based on
that schedule.

These features provide greater Programmer productivity and greater computer
efficiency. Each is discussed in greater detail in the "Summary of Jol's
Instructions" section of this Concepts and Facilities Manual.

Other Jol Features

to Further Increase

Programmer

Productivity

Programmer time spent on maintenance and development is a necessary cost in
running an OS Data Center. However, a significant portion of this time is
normally spent in performing non-programming related functions. Jol provides
the following features that substantially reduce the time and training required to
carry out these non-programming related functions.

Relational

Capability

Jol's powerful macro facility is a set of instructions stored in a macro library.
This macro facility can be used to create Jol instructions tailored to the Users'
specifications. This facility provides a transparent error free interface for the
Programmer and User to existing software products. Additionally, Jol macro
instructions such as SORT, COPY, PRINT, COMPILE and COMPRESS are
available to reduce the redundant labor efforts normally associated with these
common routines.

Change Facility

Jol's comprehensive Command structures reduce the labor intensive practices
associated with OS jobstreams. With Jol, all program and data set definitions are
defined only once. This feature dramatically reduces the time required to
implement changes.

Registration

Capability

Jol enables Users to record all attributes of a program once (e.g. name, language
type, source location, function, load library name, file names, compiler options,
link options, autocall libraries, and copy libraries). This facility provides
standard enforcement and swift accessibility to the attributes of the program.

Jol Concepts and Facilities Manual - Preface

Library Facility

Jol provides an include capability similar to the COBOL copy verb which allows
common or static code to be stored in the INCLUDE library. The INCLUDE
library can contain program, data set, and data card definitions which can
optionally be defined in a single member or as individually included members.
The current values of these definitions can be defined with symbolic variables
allowing temporary changes to the procedures, and enabling Multiple Users to
share the member containing these definitions.

Dependent Job

Submission Facility

In addition to the full Jol Scheduling Facility mentioned above, Jol enables Users
to submit subsequent jobs at any point within the job currently executing. This
process provides a facility to effectively schedule dependent jobstreams. The
dependent job is not submitted or placed on the system job queue, until the
current job has reached a point where it is desirable or safe to run the dependent
job. By using this technique, a linkage can be created which controls the
sequence of running a number of jobs.

Logic Capability

Jol contains IF, THEN, ELSE, AND/OR, and DO logic. This logic provides
the Programmer with a powerful tool for manipulating programs in jobstreams
based on variable conditions, calendar information, and ABEND situations.

Enhanced Data

Center Operations

An efficient production environment is vital for the smooth operation of a Data
Center. Jol provides the following features to help you achieve the right work
environment.

On-Line Data

Entry for Job

Submission

Jol enables Users to create 'PANELS' or pre-formatted screens for inputting data
to Jol or other programs. Effective use of this feature insulates the User from
most of the tiresome details of entering information pertinent to a job(s), and at
the same time, provides an efficient low overhead method of doing so. Facilities
are provided to:

• Display text.
• Display text and allow replies to be entered.
• Display text with default replies.

Calendar Facility

Jol has an in-built calendar which can be used to select jobs or parts of jobs on
particular dates, days, months or years.

Rerun/Restart

Facility

By using symbolic variables, Jol gives you total flexibility in organizing restarts
with simple instructions. This facility allows you to commence the job execution
at any point other than the beginning of a job, and also allows you to stop the job
at any point other than at the end of a job.

Standards

Enforcement

Jol provides the means for the consistent enforcement of standards and for the
enforcement of standards across all required levels. User supplied routines can
be incorporated into the Jol processor when it is generated. Jol makes available
to these routines all the job control information pertinent to a particular job.
These routines can then examine this information and override any element if
necessary.

Jol Concepts and Facilities Manual - Preface

Communication

Ability

Jol provides a facility to communicate with the Operator or User, and to place
messages on the System Log of the job. This communication can take 2 forms:

1. Simple instructions to the User.

2. Request a specific reply from the User.

Easy Overriding

All Jol definitions can be overridden. To override a job, program, data set, or
symbolic definitions, simply code another definition before the existing
definition. Jol gives the first definition preference. In some cases no
modification of the Jol text is required. When processing needs to be transferred
to a back-up machine with a different hardware configuration, the Jol processor
can automatically perform all the necessary global changes. Similarly, generic
changes resulting from alterations in the specifications of a public or shared
program, can be optionally accomplished by changing a catalog text in the Jol
'INCLUDE' library or by changing a macro prototype in the Jol 'MACRO'
library.

Efficient Computer

Usage

Maximum utilization of the Operating System resources is essential in achieving
the smooth and economical running of a Data Center. Jol comfortably achieves
this criterion, and easily surpasses other Command Languages and OS interfaces
with the following group of facilities:

Catalog

Management

Catalog searching is minimized and only needs to be performed at submission
time. Data sets are defined only once in a Jol job, hence the catalog needs to be
searched only once regardless of the number of times a data set is used.

Tape Access

Management

Jol ensures that tape data sets are left positioned correctly, even in cases where
several data sets are created or read on one tape volume.

Reduction in Job

Steps

Even when the JCL generate option is used, all CATALOG and SCRATCH
statements are performed in the one OS step due to a transient Scheduler/Initiator
being incorporated in the Jol Processor. Sometimes, several programs can be
executed in the same OS job step - further reducing the OS Initiation/Termination
overheads.

Reduced

Overheads in

Symbolic

Translation

Symbolic usage is greatly reduced because all Jol definitions are defined once.
Additionally, all symbolics are resolved prior to submission - further reducing
the OS Reader/Interpreter overheads.

No Hooks to the

Operating System

Installation of Jol is simple and does not require an IPL. Additionally, User Exits
can be incorporated into Jol to enforce standards and provide User defined
facilities without concern to the operating system. This ensures that an operating
system upgrade does not necessitate a reapplication of these exits.

Jol Concepts and Facilities Manual - Preface

Jol Concepts and Facilities Manual - Preface

 USING Jol

Overview in Using

Jol

Simplicity in use, is the first feature of Jol to be noticed by the first time User.
Power, speed and Jol's extensive range of facilities are next noticed.

In summary, to use Jol, the User firstly specifies the data sets and programs
which may be required for the job. Simple instructions such as RUN and SORT
can then be used to set the job in motion. The job may be: sorting of data sets,
testing condition codes, running programs, etc.

Before the Jol Compiler allows the job to execute, it runs detailed validation
checks on the instructions and declarations that have been made available. Thus
saving computer time that could be lost through job failures. It checks that no
execution of an instruction will cause the job to fail at any stage, and that there
are no data sets or libraries missing.

If no serious errors are detected, Jol will allow the operating system to schedule
the job for execution in a background region, or the job may be run immediately
under TSO.

Jol may be executed interactively or in a background region. Executing Jol
interactively allows the use of full screen PANELs to input data. This data can
then be used to create different job streams or as input to your programs. This
process is described as Preprocessing the Jol text, and is described in detail in a
later section of this manual.

Jol Concepts and Facilities Manual - Preface

Computer Aided

Instruction in

Learning Jol

A Computer Aided Instruction (CAI) package for Jol is provided to assist in the
learning of Jol. The CAI package provides a complete teach yourself facility, in
individual selectable units, with tests at the end of each unit for self evaluation.
The CAI package is interactive and uses full screen PANELs to display the data.

To run the CAI package, simply enter the following Command:

CAIJOL;

This command invokes the CAI, and then the CAI displays the following menu
screen:

CAI MENU

Jol introduction and overview =1
Jol language structure =2
Declaring jobs, programs, and datasets =3
Symbolic variables =4
Disposition processing =5
IF statement and REDO instruction =6
Compiling and running your programs =7
Dataset management commands =8
Communications and error handling =9
Job processing facilities =10
Macro facilities =11
Extra commands =12
Terminal Users Guide =13

Figure 3-1. CAI Menu

Notes relating to Jol's CAI package:

1. A special version of the CAI Jol Course is available for the IBM Personal

Computer.

2. CAIJOL runs interactively under TSO or the Personal Computer.

3. PFK keys are used to provide further flexibility.

4. A test option is provided at the end of each unit for self evaluation.

5. The CAI package is expandable to incorporate any User-supplied information

pertinent to the site.

Jol Concepts and Facilities Manual - Preface

Preparation of Jol

Input

Two methods are provided for preparing input for Jol. The first is a series of
formatted TSO screens which are menu driven. As a general rule, only certain
key parameter fields are required for preparing input for Jol on these screens.

The second method allows the input to be prepared using any type of facility
which provides fixed length 80 character records, such as a keypunch, TSO,
CMS and other TP Monitors.

The two input methods can be intermixed.

The use of either input method removes the need for knowledge of OS syntax,
keywords, format requirements, parameter positioning and sub-parameter
sequences.

You can concentrate strictly on defining the values of the variable parameters.
The variable parameters are the jobname, program names, names of data files,
and attributes of data files. These must be supplied with each job if the files or
data sets are not cataloged or are being newly created. Other data fields may be
optionally used to make use of various OS facilities.

The technical documentation that accompanies the Jol system contains detailed
explanations of all fields.

Methods of Using

Jol

Two methods are provided in using Jol. Jol can be used either in Dynamic and
Interactive mode, or in Batch mode.

• The Interactive method operates via a Terminal Processing monitor. With
this method, Jol becomes conversational and can be menu driven. A "HELP"
facility and the Computer Aided Instruction (CAI) facility are also provided.
To further simplify the use of Jol, Menus or "PANELS" can be created by
Users.

• The Batch method involves executing a supplied procedure and selecting the
required Jol text member. The Jol input can be prepared using any type of
facility which will provide fixed length 80 character records, for example,
keypunch, TSO/ISPF, CMS, CICS and other TP monitors.

Both methods make full use of all Jol logic facilities.

Jol Concepts and Facilities Manual - Preface

General Format of

a Jol Program

A Jol job is made up of one or more statements, instructions or commands.

Statements may DECLARE or DEFINE variables, data sets, programs, etc.
Instructions and Commands cause some action to be taken with the items
DECLARED or DEFINED.

In general the following procedure is followed:

1. Code all variable definitions.

2. Code all the data set and program definitions.

3. Code the instructions and commands to manipulate the defined data.

Figures 3-1 and 3-2 below show examples of how a Jol job can be layed out and
documented.

SORTJOB : JOB ACCT='(1,000,SYS,,,1)'

NAME=JOLUSER CLASS=A
USER='??????' PASSWORD='????????' ;

STEP10:
SORT PAYROLL.TRANS

TO PAYROLL.SORTED.TRANS
FIELDS = (69,2,CH,A) ;

IF STEP10 = 0
THEN DO ;

CATLG OUTPUT ;
SUBMIT PAYUPDT ;

END ;

Figure 3-2. A condensed Jol Job Example.

The SORTJOB above sorts the PAYROLL.TRANS file to
PAYROLL.SORTED.TRANS using the sort fields specified in the FIELDS
parameter.

The attributes, volume and space requirements for the output data set are stored
in the data set data base. This data set is usually maintained by the Data Set
Administrator, and separates the data set attributes from the Jol program.

The data set attributes may have been specified as:

PAYROLL.SORTED.TRANS
FB 80,800 5 TRKS
SYSDA VOL=WORK01 ;

Jol Concepts and Facilities Manual - Preface

/* THIS JOB PERFORMS A SORT ON THE DATASET
'PAYROLL.TRANS' AND PRODUCES A DATASET
CALLED 'PAYROLL.SORTED.TRANS'.

NOTE: THE ';' SIGN INDICATES THE END OF A STATEMENT
IN JOL. THIS AND THE ABOVE STATEMENTS
ARE EXAMPLES OF CODING COMMENTS IN JOL */

/* DEFINE THE JOBCARD */

SORTJOB: JOB /* SORTJOB is the Jobname */

ACCT = '(1,000,SYS,,,1)' /* Specifies Accounting Information

*/
NAME = JOLUSER /* Specifies the Programmer Name */
CLASS = A /* Allocates the Job Class */
USER = '??????' /* Provides USERID for RACF */
PASSWORD = '????????' ; /* Provides PASSWORD for RACF */

STEP10: /* Stepname */

SORT PAYROLL.TRANS /* SORT Command */
TO PAYROLL.SORTED.TRANS
FIELDS = (69, /* Start of Field */
 2, /* Length */
 CH, /* Character */
 A) ; /* Ascending */

IF STEP10 = 0 /* SORT OK? */
THEN DO ;
 CATLG PAYROLL.SORTED.TRANS;
 SUBMIT PAYUPDT; /* Submit the next job */
END;

Figure 3-3. A Fully Documented Jol Job Example.

The above examples highlight a number of features in preparing a Jol job:

1. Definitions, instructions, and commands can be intermixed. However, clarity
is greatly improved if the suggested procedure is followed.

2. Symbolic variable processing can be performed anywhere in the job.

3. Defined items do not have to be used in any instructions, thus allowing them
to be placed in a member of a library and INCLUDEd. At the same time the
instructions to the items can be coded following the INCLUDE instruction.

4. Data set identifiers or DSIDs can be allocated to all data set definitions.
These DSIDs can then be used in instructions, commands and program
definitions. This means that any details about a data set need only be defined
once, and thereafter every reference to the DSID automatically picks up the
required information.

5. Comments can be coded anywhere in the jobstream where a blank space is
allowed.

Jol Concepts and Facilities Manual - Preface

Automatic

Scheduling

While Jol can be used as a simple replacement or enhancement package for JCL
and CLISTS, Jol has other facilities that have been designed to assist with the
scheduling of jobs. For example, Jol allows:

• Read and Write access to existing or new data sets.

These data sets may contain schedules or details of work to be run on
particular days, or under particular circumstances, or both. Jol can create
tailored job streams. These are created on finding the appropriate data in
the schedule.

• Access to the system calender.

Jol allows the date (year, month, day) and time to be accessed. Using this
data, Jol can create tailored job streams.

• Testing for the existence of data sets.

Jol can test if a data set exists. If a data set does exist, it is possible to
submit other jobs to run, or take a different path through the current job.

Networking Many Installations have a routine enabling a job to start another job, thus

ensuring that only after the first job has reached a certain point the second one
begins execution. Usually, the second job is placed on the System Input Queue
in a HOLD status. The first job issues a START or ACTIVATE command to tell
the Operating System that it may now begin the execution of the second job.

While Jol fully supports such methods, it offers a further and more powerful
method for Networking. Jol allows the invocation of itself at any time from a
currently executing Job to submit a second job, rather than having the second job
on the System Input queue.

The advantages of this method are:

• Space is not wasted on the System Input Queues.

• If the first job fails, the Operators do not have to concern themselves with the
second job, as it will not have been placed on the System Input queue.

• The Operator cannot accidently activate the second job, because it isn't on the
System Input Queue.

• Symbolic Parameters or Variables can be passed from Job to Job.

Submitting Other

Jobs

The Jol SUBMIT Command ensures the correct order of processing
interdependent jobs is observed. Other jobs may be SUBMITted at any time -
even before the end of the current job.

Usually, the source text for SUBMITted jobs can be found in a library.

Passing Symbolic

Variables to Other

Jobs

Symbolic parameters can be passed from Job to Job. Symbolic parameters are
often used to pass information to programs. An example of information that can
be passed to programs, is a date or other information that is to be printed as part
of a report. Many jobs may require the use of the same information. By using
the SUBMIT Command, it needs to be defined only once, and then all other jobs

Jol Concepts and Facilities Manual - Preface

will have the same value or the same information.

Shell (Australia) have several jobs that are initially started with a START
command. Through the Console, the first Jol job is issued the values of some
Symbolic Variables. The first job then uses SUBMIT to generate the second job,
and it also passes all the original symbolic Variables through to the second job.
This process may be repeated infinitely. For example:

JOB1 : JOB;
process

IF MAXCC < 8 | LASTSTEP=0
THEN DO;

CATLG all new data sets;
SUBMIT JOB2

SYMS('DOLLVAL=%DOLLVAL,
DATE=%USERDATE');

END;

If the maximum Return Code issued by any of the programs is less than 8, or the
LASTSTEP is equal to 0, then the second job, JOB2, is allowed to begin
execution. The second job can only begin execution after any data sets created in
the first Job have been Cataloged in the System Catalog.

Scheduling

According to Date

In addition to Jol's full Scheduling and Networking Facility, Jol has an internal
calendar that sets up the current date (year, month and day). As indicated above,
the date can be easily accessed by Symbolic Variables and passed onto the
program. Therefore, not only does Jol allow you to submit jobs depending on
conditions detected in other jobs, it also allows you to submit jobs depending on
the date. It then becomes possible to program job schedules for days, months, or
even years in advance.

Furthermore, Jol can be used to schedule your de-bugged and already tested jobs
written in the IBM Job Control Language (JCL).

For example, to submit a job on every Thursday of the week only requires the
following code:

IF %DAY='THURSDAY'
THEN SUBMIT required job;

You can be more specific and request that Jol submit the job only on the 30th of
June. To do this requires the following code:

IF %DAYNO = 30
& %MONTH = JUNE
THEN SUBMIT JUNEJOB;

Using Jol with JCL Scheduling can also be performed with JCL jobs. For example:

IF %DAY='WEDNESDAY'
THEN SUBMIT

'//JOB1 JOB'
'//PAYROLL EXEC PAYROLL,DAY=%DAY';

Not only is it possible to use the Jol date facilities, but you can also extensively
use the Jol preprocessor when using JCL. It is often desirable to write all JCL in
one central location and execute the procedures at remote computer sites.

Jol Concepts and Facilities Manual - Preface

In theory this is good practice, but in practise the remote installations invariably
must make some alterations to the distributed JCL due to differing local
requirements. The following example illustrates how to alter space requirements
dependent upon whether the procedure is to be executed in Chicago or Kansas.
The installation dependent catalog values are also correctly inserted in a system
utility control card.

IF %LOCN='CHICAGO'
THEN DO;

%SPACE='SPACE=(CYL,199)';
%CATVOL='CHICAT';
%CATUNIT='3350';

END;

IF %LOCN='KANSAS'
THEN DO;

%SPACE='SPACE=(CYL,50)';
%CATVOL='KANSAS';
%CATUNIT='3380';

END;

later...

SUBMIT '//JOB1 JOB (account etc)'
'// EXEC MAIN,SPACE=''%SPACE'''
'//IEHLIST.SYSIN DD *'
' LISTCAT CVOL=%CATUNIT=%CATVOL';

which results in either:

//JOB1 JOB (account etc)
// EXEC MAIN,SPACE='(CYL,199)' *
//IEHLIST.SYSIN DD *
 LISTCAT CVOL=3350=CHICAT *

or
//JOB1 JOB (account etc)
// EXEC MAIN,SPACE='(CYL,50)' *
//IEHLIST.SYSIN DD *
 LISTCAT CVOL=3380=KANSAS *

*Altered Lines
The above example highlights the power of the Jol Pre-processor while still
allowing you to use JCL.

Jol Concepts and Facilities Manual - Preface

GENERAL CHARACTERISTICS OF Jol

 A Control Language acts as an interface between the Operating System of the
computer and its User.

The basic task that Jol performs is reduce the complexity of this interface to its
most simple and logical form, something no other existing interface has managed
to accomplish.

While making your computing system easier to use, Jol also adds a number of
very desirable features to your system. These include: read and write access to
data sets; the ability to check dates; and an extremely powerful macro facility
that allows your installation to easily write new Jol instructions designed
specifically for your organization.

Jol delivers all the above more efficiently than all other current methods!

Command Languages depend on the conventions and formats utilized in three
main areas, and Jol excels in all three:

• Written Language.

• Language Syntax and Structure.

• Language Clarity and Semantics.

Written Languages

Jol statements have a free format and are written in a style used by most
Programmers. There are no fixed columns for the commands and statements
may be continued on to other lines and so on. In fact, the Jol language format is
similiar to PL/I, PASCAL and "C".

Jol statements can be written over as many card images as necessary, without
using any continuation card conventions.

However, if required several separate statements can be written on one card.
Please note, that only one statement per card is recommended.

Statements are made up of a series of words or symbols which are delimited by
space characters or punctuation symbols.

Each statement is ended by a semi-colon. Colons are used to specify statement
labels.

Other punctuation symbols such as parentheses, commas and equality signs may
be freely used to enhance the legibility of statements.

Language Syntax

and Structure

Basically, Jol uses an English like command structure, although menus can also
be used.

Wherever possible, Jol uses syntax that is the nearest equivalent to normal
conversational English. This is achieved regardless of whether the language used
is to define or declare jobs, programs or data sets, or used to execute programs,
request operating system services, or communicate status information.

Jol Concepts and Facilities Manual - Preface

The syntax of Jol allows the definition of symbolic variables and the assignment
of values to them. The syntactic form:

IF........THEN........ELSE........

provides a control structure which may be used to test the values of, and the
relationships between, symbolic variables and Return Codes. This syntactical
form also allows different branches of the program code to be made after an IF
statement.

Language Clarity

and Semantics

Any computer language that will be used by more than one person must clearly
express the work that must be done, and be easy to read by someone other than
the author. Jol has both these qualities.

As in most programming languages, Jol allows the definition of entities such as
data sets and programs, and provides simple instructions to use the defined
variables.

Through Jol three principal entities can be identified and defined. These being:
jobs, programs (or tasks) and data sets.

The static relationship between these entities are expressed by Jol through
declarative statements. For example, the core storage requirement, time required
to execute individual jobs, etc.

The dynamic relationships and interactions between the entities are expressed
through procedural instructions. The principal elements of these procedures are
the sequences of actions which can occur and the relative controlling conditions
under which they occur.

A clear distinction between static and dynamic elements is maintained
throughout Jol, enabling the control of overall system behavior to be expressed in
a lucid and straightforward manner.

Definitions

Instructions manipulate jobs, programs and data sets. Definitions specify the
static resources and data sets that can be used by the instruction.

Jol Concepts and Facilities Manual - Preface

Program Definition

A statement of the form:

DEFINE name PROG options;

defines a program. Options available include phrases such as:

internal-file-name READS data-set-name

These options bind the file names in programs to the data sets defined in the Jol
data set data base or in the System Catalog. For example, to define the program
called UPDATE which is to be found in the cataloged PAYROLL.LIBRARY
program library:

DEFINE UPDATE PROGRAM,
LIB=PAYROLL.LIBRARY,
MASTIN READS ACCNTS.MASTER(0)
MASTOUT WRITES ACCNTS.MASTER(+1)
SYSPRINT WRITES PRINTER;

Note: Program definitions are typically stored by Jol and used with the EXEC
statement.

Printer Output

Definition

A statement of the form:

DEFINE name PRINTER options;

defines the relevant printer output. Options available incude: multi-part paper,
special forms, record size, block size and format. For example:

DEFINE MULTI PRINTER 2 COPIES;

Card Image Input

Definition

Any card image input can be included as part of a Jol program. Jol allows card
image files to be read any number of times. MACRO Prototypes and Jol source
text stored in an INCLUDE library can Åboth contain card files.

The User also has the option of requesting Jol to replace any Symbolic Variables
in the text of a file with their current values. This facility is particularly useful
when creating control statements for utility purposes, for example:

DCL CARDFILE * REPLACE;
SORT FIELDS=(%FIELDS)

EOF;

The current value of %FIELDS will be copied to the card image file.

Data Set

Definitions

There are three classes of data sets: OLD, NEW and TEMPORARY.

Old Data Sets

An old data set is one which already exists before the job is run. It continues to
exist after the job is run, unless a SCRATCH or DELETE instruction is
executed for it.

Jol Concepts and Facilities Manual - Preface

New Data Sets

A new data set is one which is created within the job. It is automatically
SCRATCHed after its last use in the job, unless a KEEP or CATALOG
instruction is executed for it.

Temporary Data

Sets

A temporary data set is used for working storage in the job and is then
automatically SCRATCHed after its last use in the job.

A statement of the form:

DEFINE data-set-identifier DATA SET options;

defines a data set. The options available are numerous and relate to format,
record and block sizes, unit type, volume, etc.

With Jol version 5, all data set attributes such as Record Format, Space and
Volume may be saved in the data set data base for automatic inclusion by Jol
when it requires such details - typically for new data sets.

You may also use installation defined models such as SMALL, LARGE for
complete flexability, and to further reduce coding requirements.

Free Format and

Optional Keywords

In many cases keywords may be coded or left out when a data set is defined. For
example, defining a data set with dsname YOUR.DATA.SET on Volume
111111 as a Variable Blocked Data Set with 5 Cylinders and 1 Cylinder
Secondary Allocation may be done in the following ways:

DCL DSID1 DATA SET
DSN=YOUR.DATA.SET VB 100,7294
VOL 111111 UNIT 3350
SPACE=5,1 CYLS;

or DCL DSID1 DS
YOUR.DATA.SET
VB 100,7294
3350 111111
5,1 CYCLS;

or DCL DSID1 DS

VB 7294, 100
DISK 5,1 CYLS
VOL 111111
YOUR.DATA.SET;

You will notice that the VB specification has 100,7294 or 7294,100 coded after
it. Jol takes the largest number as being the Block Size, unless SPANNED
records have been specified.

If you need to override part or all of the data set information, you only need to
redeclare the DSID (Data Set Identifier), and the part overriding will then be
carried through the entire generated JCL, no matter how many times the data set
is used. This makes overriding extremely simple.

Concepts and Facilities Manual - Additional Facilities 5-39

ADDITIONAL FACILITIES

 One of Jol's features that has been repeatedly emphasized throughout this manual
is the extensive range of User benefits and facilities available. Due to the very
nature of these facilities, it is not possible to present detailed technical
descriptions and explanations of these in this Concepts and Facilities Manual, or
even make you aware of them all. However full details are available on request.

Presented below are only brief descriptions of some of the more important of
these facilities.

Data Base of Data

Set Attributes

Version 5 of Jol adds a data base of data sets to Jol, and makes a typical Jol job a
series of EXEC or RUN instructions, with COPIES, CATALOG and other
instructions only. With this facility, Mainframe jobs become as easy as running
programs on MS/DOS or UNIX.

For example, to execute a program called UPDATE you can code:

Exec Update Payroll.Master(0),
Trans.Action(0),
Payroll.Master(+1);

If Update = 0
then do;

Catalog Payroll.Master(+1);
Submit Job2;

end;
else Stop 'Error in Job';

Note: "Old Style" Jol programs may continue to be used, and the data base will
be accessed for new data sets, and information merged with any current
declares for data sets.

The addition of the Jol data set data base facility:

� Greatly reduces the training required for new JCL Programmers and
increases their productivity even further.

� Further reduces the amount of coding required to run a Jol job. By removing
the necessity to code program and data set declares, most Jol jobs are
reduced by an average of 75% or more. Executing a program now only
requires writing a line or two of code for each program.

� Provides a set of commands that will function in a similiar way on
Mainframes, Personal Computers and Unix systems.

� Assists in creating an environment whereby the Data Manager can have
more (and separate) control over data set placement and other attributes.

Concepts and Facilities Manual - Additional Facilities 5-40

� Adds full VSAM support (with the exception of automatically deleting data
sets at the end of a job).

Language

Extension - Jol

Macros or

Commands

The Jol language can be tailored to an installation's specific requirements by
using the Jol MACRO language to create new and customized Jol statements.
The macro prototypes for these statements are stored in the JOL.CMDLIB
library.

Although not discussed in this manual, Jol has facilities to incorporate
Assembler, COBOL and PL/I routines into the Jol Compiler. These routines then
become part of the Jol Language - tailored to your own requirements.

Macros

The Jol macro language does not impose an arbitrary fixed syntax for the
invocation of macros, such as a fixed position and order for elements of the
parameter list. The syntax of the macro can be designed to reflect the semantics
of the statement. Jol allows keyword parameters, which may be coded anywhere
in the invoking statement, and positional parameters, which may be located in a
fixed position or relative to a keyword.

Furthermore, the macro prototype can be designed to allow many variations in
the syntax actually used in the invoking statement. The only real restriction is
that the name of the macro must be the first word in the statement.

The macro Language is a natural extension of the Compile Time Facilities.

It allows you to add new Jol instructions as you require them, and as simply as
you do with Cataloged Procedures for OS normally. It also permits the use of
any previous Macro Command, thus giving you the opportunity of virtually
executing a procedure within a procedure.

Nearly all Jol code can be made into Macros by placing an extra MACRO
statement at the beginning of the Jol text to define keywords, defaults, etc and
placing an END at the end of the code, and then storing it in the Macro Library.
Whenever a non-standard Jol instruction is then encountered, the code in the
Macro will be read and executed if appropriate.

Source Text

Library

Jol provides a facility for the storage of Jol source text in a library. This is
known as the INCLUDE library. The library text can contain any Jol statements
as well as input card image data sets.

A statement of the form:

INCLUDE member-name;

copies the text from the specified member into the Jol input stream, replacing the
INCLUDE statement. It is then processed as if it were an original part of the
input stream.

Applications of this facility include the storage of complete production job
procedures, including any changeable card input data sets; and the storage of
common procedures such as those used to invoke utility programs.Ý

The INCLUDE member statement may be used to conveniently include a series

Concepts and Facilities Manual - Additional Facilities 5-41

of data set definitions. This allows the installation to set up various members of
the library with data set definitions. Anyone who wants to run part of that set of
programs, need only include the data set definition member to save coding out
the required data sets.

Unlike JCL, data cards can be INCLUDEd in the text together with other text.
You can even replace parts (or all) of these data cards with the current values
contained in Symbolic Variables.

An INCLUDEd member may INCLUDE another member. This process can be
performed to a depth of eleven levels.

Compile Time

Facilities

All Jol programs are firstly compiled and then submitted to the host operating
system for execution.

The compile stages may be divided into three main stages:

1. The MACRO or PREPROCESSOR phase.

2. The COMPILE phase.

3. The GENERATE phase.

While Jol is interpreting the Macro instructions in preparation for the COMPILE
phase, you can alter selected parts of your program. These include:

1. Defining Symbolic Variables and initializing them.

2. Testing the current values and contents of individual Symbolic
Variables.

3. Changing the values within Symbolic Variables.

4. Indicating the sections of the source program to be compiled.

5. Including source text from a library.

The output from this Macro phase consists of the updated source statements,
which is then input to the compile phase to create the instructions necessary for
the Operating System to execute the job.

Jol allows the User to freely intermix preprocessor and macro statements with the
rest of the instructions within the job.

Symbolic Variables

Compared with JCL's Symbolic Parameter facilities, Jol's symbolic parameter
facilities have been greatly extended to allow the values of symbolic variables to
be:

� Tested.

� Changed.

� Added, subtracted, multiplied, divided and concatenated to other variables or
to literal constants.

By using Jol's extended forms of symbolic parameter processing, it is possible to
code large Jol jobs that have a large number of steps, some of which are executed

Concepts and Facilities Manual - Additional Facilities 5-42

on a daily, monthly or yearly basis.

By examining a variable, such as the System Date, it is possible to generate only

the required JCL for that particular run.

One example of this facility's application, is the creation of unique data set names
which contain the date they were created on, or they can contain the name of the
program they were created by.

In this field, the IF statement in Jol is especially useful to test Return Codes or
Symbolic Variables or both. For example, assume that Symbolic Variable %A
contains the value 'A' in it. By using an IF statement, it is possible to check at
any time if the value has been retained. The statement:

IF %A = 'A'
THEN DISPLAY 'VARIABLE A HAS VALUE %A' ;

will display the required message. If the variable %A contains any value other
than A, no message will be displayed.

A simple IF statement can also be utilized to test the Return Codes of programs.
For example:

IF PROGRAM1 > 8 THEN TYPE 'ERROR OCCURRED';

will perform a simple Return Code test and display a message on the Operator's
console if PROGRAM1 did not return an 8 or less on completion.

With Jol, it is also possible to use a simple IF statement to test both Symbolic
Variables and Return Codes. For example:

IF %A = 10 & PROGRAM1 = 8 THEN......

will initially cause the value of the Symbolic Variable %A to be checked. If %A
contains a value of 10, the Jol compiler then creates an instruction to the monitor
to test that the program, PROGRAM1, did run and that it returned an 8.

 If %A was not found to contain a value of 10, the next instruction would not be
executed, because the Jol preprocessor would determine that the instruction could
never be true. Therefore, it would not even generate an instruction to the monitor
to execute when the job is actually running.

The IF statement can be made as simple or as complex as required. Up to 40
different tests can be incorporated within one single statement, and there is no
limit to the number of IF statements that can follow one another. Additionally,
DO and END pairs can be used to create a group of instructions that are executed
or bypassed.

A realistic example of this type of facility is shown in the example on the next
page. It is the sort of operation carried out by many organizations for their
payroll. It takes into account weekly paid and salaried staff, including the
variation of week/month endings.

Concepts and Facilities Manual - Additional Facilities 5-43

DCL %WEEKRUN, %MONTHRUN

INIT ' '; /* Define Symbolics */

/* Calculate if this date is the first day of the Business Week
or the first day of the month.

If so, set %WEEKRUN and %MONTHRUN to 'YES', because if so
we shall run the Weekly and Monthly programs. */

IF %DAY='MONDAY' /* Is it MONDAY ? */
THEN %WEEKRUN='YES'; /* Yes, Weekly Processing */

IF %DAYNO=1 /* First day in Month ? */
 & (%DAY < 3
 & %DAY='MONDAY') /* Take care of Weekends */
THEN %MONTHRUN='YES';

IF %WEEKRUN='YES'
THEN DO; /* Do Weekly Processing */

RUN WEEKPGM; /* Run first Program */
IF WEEKPGM=0 /* Did it Execute correctly ? */
THEN SUBMIT NEXTJOB; /* Yes, so SUBMIT the next job of

WEEKLY job stream */
END;

IF %MONTHRUN='YES' /* Test for Month Run */
THEN DO;

RUN MONTHPGM; /* Run 1st Month Program */
RUN MNTHUPDT; /* and the second one */
CATALOG X,Y; /* CATALOG Output Data Sets */

IF MONTHPGM=0 /* If both MONTHLY Programs
 & MNTHUPDT=0 THEN

executed correctly, THEN

SUBMIT the next two jobs
SUBMIT JOB2,JOB3 passing the value of

%MNTHRUN through to them */
SYMS 'MONTHRUN=%MONTHRUN';

END; /* End of Job */

 Figure 5-1 Sample of Payroll Job

In the above example, WEEKPGM and the generation of NEXTJOB will only
occur on MONDAYs. MONTHPGM, MNTHUPDT, the CATLG instruction
and the generation of JOB2 and JOB3 will happen only on the first day of the
month, or the next Monday following.

Following the above program, one would normally have the DAILY processing
programs to perform.

Concepts and Facilities Manual - Additional Facilities 5-44

Restarts

To provide Users with the maximum flexibility, Jol itself does not have an inbuilt
automatic restart facility. However, the STARTAT and STOPAT instructions
allow the User to skip over any instructions that do not need to be executed.

Using Symbolic Variables offers you total flexibility in the way that restarts are
organized. Although this initially means a little extra planning and coding, you
can organize the Jol program so that one Symbolic Variable is set to a specific
value. This value can be tested in your main line code and depending on its
value you can:!a

• Reset generation numbers.

• Uncatalog or delete data sets or both.

• Rerun certain programs.

• Introduce new steps.

• Perform overrides on data set names.

For example,

IF %RESTART = 5
THEN PRINT MASTER(0);
ELSE PRINT MASTER(+1);

Simple Reruns

A data set is never CATALOGed or KEPT until the appropriate instruction has

been given. Therefore, it is possible to keep all the disposition instructions until
the end of your job. If an error occurs, any CATALOG, KEEP or DELETE
statements will not be performed, thus ensuring that the data sets will be left
exactly as they were. The job can simply be rerun.

This facility can also be used with the generation of data groups.

Advanced Methods

A more advanced method, especially applicable to long jobs, is to set up the Jol
program in such a manner that a series of regular reference points are set up. At
these points the normal disposition processing will be performed as described
above.

However, if an error occurs, the program will abort and the disposition
processing will not have been performed. By using Symbolic Variables it is
possible to backtrack to the previous point from which a rerun can commence.

While this method requires some extra planning, it is by far the most powerful
way of restarting a job. Some of the restart programs may replace defective
copies of data sets from Backup copies or other Delete Data Sets or both. All
this can be planned in advance.

Concepts and Facilities Manual - Additional Facilities 5-45

Generation Data

Groups

MVS and many other Operating Systems provide a powerful facility with JCL
that allow the writing of JCL so that when a job is executed new data sets will be
automatically created and cataloged.

Every time you need to write a new data set, you specify that you require a (+
generation), and the new data set will be automatically created. For example,
when you have an Accounts Receivable application, which has a masterfile
incorporated within that you wish to keep each time the Accounts Receivable job
is run, you may call the data set:

AR.MASTER

When the main masterfile update program writes a new masterfile it calls the
new data set:

AR.MASTER(+1)

JCL will automatically change the name to, for example:

AR.MASTER.G0019V00

The '019' is updated every time a new +1 data set is created with the next data set
being:

AR.MASTER.G0020V00

However there are two main problems with this particular JCL facility:

1. The only way to stop the system from CATALOGing the data set is to have

the program ABEND.

2. Restarting is extremely difficult with JCL, because every time you refer to

that data you must change the name to the G----V-- format.

Jol solves these problems by:

1. Allowing the User to CATALOG such a data set, after testing that the

program has been executed correctly. For example:

EXEC UPDATE
AR.MASTER(+1);

IF UPDATE=0
THEN CATLG AR.MASTER(+1);

With this method, you can control whether the data set is to be
CATALOGed or not.

However, it should be remembered that you can execute or RUN more than
one program. Then all the data sets can be CATALOGed at the end of the
job so that if a failure occurs, the entire job can be rerun from the beginning
with no change to the Jol program.

 2. Automatically resetting Generation numbers in Restart situations. For
example, if Jol finds the first reference to a data set is (+1), it will subtract

Concepts and Facilities Manual - Additional Facilities 5-46

one from all generations of that data set until the lowest reference is (0).

Jol also allows you to define the data set in only one place, and have your
programs refer to the definition.

This means that if the name defined has to be changed to the
G----V-- format, the change has to occur only in the one place. You do not
have to make sure that you have overridden every DD card referring to that
data set.

Consider:

EXEC UPDATE AR.MASTER(0),

 AR.MASTER(+1);

IF UPDATE = 0 THEN
DO;

CATLG AR.MASTER(+1);
PRINT:

EXEC PRINT AR.MASTER(+1);
END;

Now, assume that the PRINT program fails to execute properly, after the
CATALOG instruction. It is not possible to merely resubmit the job,
because then the system will rerun the first update program as well as the
print.

You can say:

STARTAT PRINT;

and Jol will reset the generation number (+1) to (0) so that the job will
execute correctly. This action is performed because the data set
AR.MASTER(+1) would not have been created by the UPDATE step as it
would have been by-passed by the STARTAT instruction.

Another method that could be used in similar circumstances is to use a Jol
override instruction to manually change the (+1) data set to a (0) data set.
For example, if the following is coded before the Jol program, the
generations will be set to the correct values.

DCL NEWMAST DS AR.MASTER(0);

STARTAT PRINT;

The generation of AR.MASTER is set to relative generation zero (0) with
the override statement and the job will commence at the PRINT step.

 3. Allowing you to define the relative generations in Program Definitions, and
allowing you to use a Base Index level or Generation Name. For example:

DCL INDEX DS DSN=AR.MASTER;

DCL UPDATE1 PROG

INPUT READS INDEX(0)
OUTPUT WRITES INDEX(+1);

Concepts and Facilities Manual - Additional Facilities 5-47

DCL UPDATE2 PROG

INPUT READS INDEX(+1)
OUTPUT WRITES INDEX(+2);

DCL UPDATE3 PROG

INPUT READS INDEX(+2)
OUTPUT WRITES INDEX(3);

 ONE: RUN UPDATE1;

IF ONE=0
THEN DO;

CATLG INDEX(+1);
TWO: RUN UPDATE2;

IF TWO=0
THEN DO;

CATLG INDEX(+2);
THREE: RUN UPDATE3;

IF THREE=0
THEN CATLG INDEX(+3);

END;
END;

Now, if the job breaks down at level THREE, what has to be done is:

DECLARE INDEX DS DSN=AR.MASTER(-2);

STARTAT THREE;

and place the original Jol program immediately after. Jol will then calculate
that (+2) is really (0) and that (+3) is really (+1).

Concepts and Facilities Manual - Additional Facilities 5-48

Concepts and Facilities Manual - Instructions 6-49

SUMMARY OF Jol's INSTRUCTIONS

 Jol provides Users with a wide range of short form instructions. Many of these
instructions and commands have been defined through the use of Macro
Command statements.

The specific number of Commands available depend on the Jol Release. In
addition, each installation usually adds its own Commands. Hence, the
following list of Commands is representative only.

ALLOCATE The ALLOCATE instruction dynamically allocates New or Old Data Sets for
Input or Output in the Preprocessor Phase of Jol.

Allocated files can then be accessed with the OPENFILE, GETFILE, READ,

PUTFILE and WRITE instructions. ALLOCATE can be used instead of
TSO ALLOCATE or JCL DDcards to allocate data sets.

ASSIGN The ASSIGN instruction is used to alter the relative values of Symbolic
Variables. By using this command it is possible to add, subtract, divide or
multiply the original value of Symbolic Variables.

ASM The ASM command compiles Assembler Source programs. The Object code is
then made into an executable program with the LINK Command, and then can
be executed with a RUN or EXEC statement. For example:

ASM SOURCE(PAYROL01) ;

BUILDGDG This command creates an index in the system catalog for generation data sets.

Examples:

BUILDGDG PAYROLL.MASTER,ENTRIES=5 ;

or

BUILDGDG PAYROLL.MASTER,NEW.MASTER,
 ENTRIES=3 ;

BUILDJOB The BUILDJOB command allows the User to create Jol programs directly from

the console. The User simply types in the name of the programs, the data sets
they require, and the actions the programs perform on the data sets. The
BUILDJOB command then creates Jol statements required for the job.

CALL The CALL instruction loads and executes programs immediately in the
Preprocessor Phase of Jol.

CATALOG The CATALOG instruction enters either individual or groups of data sets into
the system catalog.

CLOSE and

CLOSFILE

The CLOSFILE instruction closes a file previously opened with the
OPENFILE instruction.

COBOL The COBOL command compiles Cobol Source programs. The Object code is
then made into an executable program with the LINK Command, and then can
be executed with a RUN or EXEC statement. For example:

Concepts and Facilities Manual - Instructions 6-50

 COBOL PAYROL01 ;

COMPARE This command compares either two Sequential Data Sets or two Partitioned Data

Sets. Examples:

COMPARE NEW.PROCLIB
TO OLD.PROCLIB PDS ;

or

COMPARE MASTER.FILE(0)

TO MASTER.FILE(-1) ;

COMPILE The COMPILE Command compiles Source programs into Object code. The

Object code is then made into an executable program with the LINK Command,
and then can be executed with a RUN statement. Examples:

COMPILE PAYROL01 ;

or

COMPILE AND LINK PAYROL02 ;

COMPRESS This command re-organizes (removes unused space) from a library or Partitioned

Data Set. Examples:

COMPRESS SYS1.PROCLIB ;

or

COMPRESS SYS1.PROCLIB, SYS1.MACLIB,
SYS1.CMDLIB ;

COPY The COPY Command will copy a Sequential, Indexed, VSAM or Partitioned

Data Set to another. If required, only selected members can be copied from a
data set. Examples:

COPY SEQ1 TO SEQ2 ;

or

COPY PDS1 TO PDS2

SELECTING (MEM1,M3M2)
OLD ;

or

COPY VSAM1 TO VSAM2 ;

Concepts and Facilities Manual - Instructions 6-51

DECLARE/

DEFINE

The DECLARE or DEFINE statements define variables to be used by Jol
instructions. The following items can be declared or defined:

• Symbolic Variables
• Programs
• Data Sets
• Card Image Files
• Printer Files
• Punched Output Files

Other Jol instructions then use the declared items in the same manner as other
high-level languages.

DELETE The DELETE instruction combines the functions of the SCRATCH and
UNCATALOG instructions. The DELETE instruction removes the name of the
data set from the system catalog and frees the space assigned to the data set.

DELETE OUTPUT;

DISPLAY Prints a message on the job's system log. The message is not displayed on the
operator's console. For example:

IF %START= 'SORT10' THEN
DISPLAY 'RESTARTING AT %START' ;

DO The DO instruction is used in conjunction with an IF statement to execute parts
of a job, only if predefined criteria have been fulfilled. The DO instruction is
always terminated by an END statement.

DUMPVOL The DUMPVOL Command will create a Tape copy of a direct access volume.
The RESTORE Command will restore the volume.

EDIT The EDIT instruction allows the editing of any Symbolic Variable according to
any FORMAT list specified, allowing additional short form formatting to be
carried out.

EXEC The EXEC command executes registered programs. When a program is
registered, Jol knows the filenames or ddnames used by the program, and
whether they are used for input or output. To EXEC such a program, simply
specify the names of the data sets to be used. For example:

EXEC UPDATE /* Program Name */
PAY.MASTER(0)
PAY.MASTER(+1)
;

EXIT The EXIT instruction allows an abnormal exit from Jol and does not generate
any instructions.

EXTEND The EXTEND command adds data from one file to the end of another. For
example:

EXTEND ACCOUNTS.TRANS.ACTION
WITH NEW.TRANS.ACTIONS;

Concepts and Facilities Manual - Instructions 6-52

FORT The FORT command compiles Fortran Source programs. The Object code is
then made into an executable program with the LINK Command, and then can
be executed with a RUN or EXEC statement. For example:

FORT SOURCE(PAYROL01) ;

FREE The FREE instruction frees data sets or files so they can be re-used.

FS FS turns the interactive Jol Panel instruction on and off. When ON, Jol will
provide interactive assistance to the User; when OFF, Jol operates in Command
Mode.

GET The GET instruction provides the facility for the examination of a data set in the
Preprocessor Phase of Jol. You can GET an entire file, or have Jol search a file
(or files) and only return those parts corresponding to specified KEYS.

GETFILE The GETFILE instruction reads a record from a file previously opened with the
OPENFILE instruction.

IF The IF statement is used to test return codes from programs, test if errors occured
and other conditions. The IF instruction is frequently used in conjunction with a
DO statement to execute parts of a job, only if predefined criteria have been
fulfilled.
Examples of the IF:

IF VALIDATE<8
THEN RUN UPDATE;

or
IF ERROR /* Abend ? */
THEN DO;

TYPE 'CRITICAL ERROR IN ACCOUNTS';
SUBMIT RESTORE;

END;

INCLUDE The INCLUDE instruction allows you to include text into your program from a
library or Partitioned Data Set.

INVOKE The INVOKE instruction causes User written programs to be loaded and
executed. The results produced by the Invoked Routine(s) can be Jol Source
Statements. Jol will then interpret these as if they had been part of the original
input stream. The invoked program can open its own files and perform any
normal program functions.

JOBCAT The JOBCAT instruction defines a private catalog to be used for the job, instead
of the default system catalog. A STEPCAT can be used to temporarily override
the JOBCAT or default catalog. For example:

JOBCAT PRIVATE.CATALOG1
|| PRIVATE.CATALOG2;

JOBLIB The JOBLIB instruction defines a private catalog to be used for the job, instead

of the default system catalog. A STEPLIB can be used to temporarily override
the JOBLIB or default catalog. For example:

Concepts and Facilities Manual - Instructions 6-53

JOBLIB PRIVATE.LINKLIB1
|| PRIVATE.LINKLIB2;

JOBPARM The JOBPARM instruction informs JES3 processing systems about particular
requirements for your job. For example:

JOBPARM ELAP 2, COPIES 2;

JOLOPT The JOLOPT instruction re-specifies Jol Compiler processing options.

KEEP The KEEP instruction ensures that a new data set is retained after the
termination of the job in which it was created.

KEEP NEW.MASTER;

LINK The LINK Command will create an executable load module or program from the

object code produced by the COMPILE Command or produced from a
previously linked load module or from both. The RUN Instruction can then be
used to execute the program.

LINK UPDATE LOAD('TEST.LOAD');

LIST The LIST command is used to print the contents of a data set in HEX or

CHARacter format. If required, only parts of the data set can be printed.

LIST TEST.INPUT.FILE;

LISTCAT The LISTCAT Command is used to list the System Catalog in its entirety or list
only specified NODEs.

LISTCAT LEVEL(PAYROLL.TEST.FILES);

MACRO The MACRO statement defines the start of code to be used as a new instruction
or macro. Parameters to be used by the instruction, and defaults if any, are also
defined in the MACRO statement.

MAIN The MAIN instruction informs JES processing systems about particular
requirements for your job. For example:

MAIN LINES 20 CANCEL SYSTEM ANY;

MERGE The MERGE Command merges two or more sequenced data sets into one
composite data set.

MERGE 'INPUT.FILE1'
|| 'INPUT.FILE2'
TO OUTPUT
FIELD=(10,10,CH,A);

PLI The PLI command compiles PL/1 Source programs. The Object code is then

made into an executable program with the LINK Command, and then can be
executed with a RUN or EXEC statement. For example:

PLI SOURCE(PAYROL01) ;

Concepts and Facilities Manual - Instructions 6-54

PRINT The PRINT command will print the contents of a data set in its entirety.

PRINT 'REJECT.TRANS.ACTIONS';

ON ERROR ON ERROR defines the type of system storage dump to be printed if a program
Abends.

OPCNTL The OPCNTL instruction allows you to output a non-JCL control card for
HASP, ASP and JES Systems.

OPENFILE OPENFILE opens a previous ALLOCATEd data set for Input or Output
processing. READ and WRITE instructions then transfer the data from or to the
files.

PANEL The PANEL instruction provides a powerful method to either:

Display screens of data on a Screen.

or

Input full screens of formatted data to Jol. Text is displayed on the
screen with any defaults; answers or defaults are then used as input to
Jol.

PUTFILE PUTFILE writes data from a symbolic variable to a file.

READ The READ instruction reads data into a Symbolic Variable from either a
terminal, or from a file previously opened with OPENFILE.

REDO The REDO instruction allows a section of Jol code to be repeated. This is very
helpful when used with the PANEL instruction to check for valid answers.

RENAME RENAME renames data sets, or members of partitioned data sets.

RENAME 'CORRECTED.MASTER.FILE'
'ACCOUNTS.MASTER.G0115V00';

REGISTER The REGISTER instruction registers a program to Jol. When the program is
used in a Jol job, only the name of the program needs to be entered. Jol then
checks the Jol register for the relevant details about the program.

RESTORE The RESTORE Command is used to restore the contents of a direct access
volume from a Tape created with the DUMP Command.

RETURN The RETURN instruction stops execution without an error message.

RETURN 'JOB SUCCESSFUL';

ROUTE The ROUTE instruction directs printed or punched output to a particular printer
or punch. For example:

ROUTE PRINT TO RMT3;

Concepts and Facilities Manual - Instructions 6-55

RUN The RUN instruction executes a previously defined and named program.

RUN VALIDATE 'DAY=%DAY';

SAVESYMS SAVESYMS saves the names and values of Symbolic Variables into a member
of a Partitioned Data Set. These names and values may be restored later, thus
providing communication facilities between jobs or subsequent executions of the
same job.

SCRATCH The SCRATCH instruction frees the space assigned to a data set.

SCRATCH 'PAYROLL.TEST.FILE';

SIGNAL The SIGNAL instruction displays an error or warning message.

SIGNAL 3,'ERROR FOUND, CONTINUE?';

SORT The SORT Command will re-sequence a data set according to format
instructions. Examples:

SORT TEST.FILE1 TO TEST.FILE2
FIELDS = (10,2,CH,A,25,2,FL,A) ;

or

SORT FILE1 TO FILE2 USING

SYS1.SORTCARD(SORTO2) ;

STARTAT The STARTAT instruction allows you to commence execution of a job at any
point other than the beginning of the Job. All instructions are effectively
bypassed until the label referred to is found, and execution begins at this point.
This has been designed to assist restarting failed applications, and an example of
its use will be found in the section on Restarts.

STOP The STOP instruction completely aborts the job in hand.

STOP WHEN The STOP WHEN instruction stops a job executing when certain Return Codes
or ranges of Return Codes are detected.

 STOP WHEN ANY>16 | ANY=8;

Concepts and Facilities Manual - Instructions 6-56

SUBMIT This command allows a submission of subsequent jobs at any point within the
currently executing job, providing the ability to pass symbolic variables from job
to job. Examples:

SUBMIT PAYROLL2,SYMS='symbolic-name-list' ;

or

SUBMIT USING SYS2.PAYROLL(PAYROLL2) ;

or

SUBMIT '//...Job...''
‘//JCL Code‘
‘//JCL Code‘
‘//JCL Code’ ;

TEXIST TEXIST tests if a specified data set exists. This command is particularly useful
for restarts or scheduling purposes.

TEXIST 'RESTART.FILE';

IF LASTCC=0 THEN ...

TYPE The TYPE instruction places a message on the Operator's console.

TYPE 'ACCOUNTS RECEIVABLE PASSED RESTART POINT

10';

UNCATALOG The UNCATALOG instruction removes the name of the data set from the

system catalog, but does not SCRATCH it.

UNCATALOG 'ACCOUNTS.TEST.FILE(-4)';

WRITE WRITE copies data from Symbolic Variables to files opened by OPENFILE or
to the terminal.As stated earlier, other Commands can be added at the discretion
of the Installation through the use of the Macro Language.

Concepts and Facilities Manual - Instructions 6-57

USER EXITS

Jol offers exit routine control at specific points allowing you to stop violation of
Installation Standards, protect sensitive data sets, and generally validate the JCL
or J-Code before it is produced. You can, for example:

� Allow only specific account codes to access certain data sets, thus providing
data set protection.

� Validate the job card information, for example, to check that the accounting
information is valid.

� See how many tape drives, or disk drives, are being used in any program.

� Check that data set naming conventions are being followed.

These exits all access pre-formatted tables. All Symbolic Variables or
parameters are replaced when these routines are given control. Simple
Assembler Macros are provided for use at these points. For example, the
JOLERR Macro will write an error message to the Jol error log, and the
JOLSAVE and JOLRETN Macros will perform saving and returning for the User
from a Dynamic Save Area.

The following exit routines are available:

UJA01JOB, UJA02PGM and UJA03DS

These are given control when an unknown symbol is found when processing Job,
Program and Data Set definitions. One of the main uses for the job exit could be
to allow the Programmer to code particular information without using the
relevant keyword, while having the exit routine recognize that individual range of
codes. For example, if the exit routine recognized all account codes starting with
FC01, the ACCOUNT keyword need not be coded. Similiarly, if all Disk
Volumes in your installation commence with 'DISK', then the exit UJA03DS
could recognize DISK01 as a disk, and even supply the device type.

The following validation exits are also available:

UJU01JOB : validate Job Card information
UJU02PGM : validate Program information
UJU03DS : validate Data Set information
UJU05CAT : validate Catalog information
UJU06DEL : validate Delete information
UJU07KEE : validate Keep information
UJU08UNC : validate Uncatalog information
UJU09SCR : validate Scratch information

 Suppose that you did not wish anyone other than a specific person to be
permitted to DELETE SYS1.LINKLIB. It is a simple matter to examine the
delete instruction at exit UJU06DEL and to check that either or both, the
Programmer's name and account code are correct.

If the instruction is held to be invalid you can:

• Cancel the entire job.

Concepts and Facilities Manual - Instructions 6-58

• Delete the one instruction.

• Write a note to the system log with WTL.

• Write to the Jol error log.

• Any combination of the above.

Two other exits are available from the Compiler - UJA98SET and UJA99SET.
These are given control before and after the Job Card has been generated, and are
mainly used to assist in generating any SETUP cards that may be required.

Concepts and Facilities Manual - Instructions 6-59

Concepts and Facilities Manual - Instructions 6-60

 Jol Concepts and Facilities Manual.

Readers Comment Form

This manual is part of the Jol library that serves as a reference source for
Managers, Systems Analysts, Programmers and Operators. This form may be
used to communicate your views about this publication.

OSCAR Pty Ltd may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation whatever. You may,
of course, continue to use any information you supply.

Possible topics for comments are:

Clarity Accuracy Completeness Organization Legibility

If comments apply to a Selectable Unit, please supply the name of the Selectable
Unit _______________.

If you wish a reply, give your name and address

__

__

__

__

__

Number of latest Newsletter associated with this publication: _____________

Please send your comments to:

OSCAR Pty. Ltd.,
38 Kings Park Road,
West Perth,
AUSTRALIA, 6005.

Concepts and Facilities Manual - Instructions 6-61

